Sektor Rotation

cello

New member
26. Dez. 2011
6.233
177
0
Svizzera
Sektorrotaion - ein interessantes und sehr weitläufiges Thema

Ich mache hier mal einen Thread dafür auf. Man hätte es auch in das Thema Intermarket Analyse integrieren können.

Als Literatur dazu kann man die Bücher von Murhpy wärmstens empfehlen.

Hier eine gute Grafik mit den verschiedenen Sektoren aufgeteilt in die Marktzyklen, wo sie die anderen Sektoren outperformen:

sr1.PNG

Quelle: FAZ

Wie eingangs schon erwähnt ist die Sektorenrotation ein sehr weitläufiges Thema. Ich werde hier sicher nicht alles wissenswerte darüber abdecken können. Erstens weil es schlicht zu viel wäre und zweitens weil ich mich selbst noch zuwenig detailliert damit auskenne. Wenn also jemand etwas dazu beitragen kann, wäre das herzlich willkommen. Ich fange mal an mit der Beschreibung aus Wikipedia:
 

Sector rotation is a term normally applied to stock market trading patterns.[1] In this context, a sector is understood to mean a group of stocks representing companies in similar lines of business.

For example, an investor or trader may describe the current market movements as favoring basic material stocks over semiconductor stocks by calling the environment a sector rotation from semiconductors to basic materials.

Investors may use Exchange Traded Funds (ETFs) to buy a diversified portfolio of stocks in various sectors and market segments and manage the portfolio according to ETF Rotation strategies.
 

Concept

A sector rotation theory says a number of things. First, whatever sector is hot (has done well recently) should continue to outperform. Second, these sectors will eventually rotate so that whatever was once out of favor will be in favor. Third, these movements are somewhat predictable. and connected with the business cycle.

Sources

Much description of sector rotation is taken from Intermarket Analysis by John Murphy.

Sector Rotation Models exist primarily to help investors identify and participate in new trending sectors of the stock market. A sector rotation investment strategy is not a passive investment strategy like indexing, and requires periodic review and adjustment of sector holdings. Tactical asset allocation and sector rotation strategies require patience and discipline, but have the potential to outperform passive indexing investment strategies.

An example of a sector rotation theory would be:

Leading

This includes stocks like consumer cyclicals and financial companies. These would do well when the market is at bottom.

In-line

This includes stocks like technology and telecommunication. These should go up more than the overall market in the main part of a bull market.

Lagging

This includes stocks like energy companies. These would do well when the market is at top.

Contrarian

This includes consumer staples. These should do least bad in a bear market.

Note that this is sectors relative to the overall market. It is expected that, during a bear market, all stocks will go down some.

Connection with other markets

The primary driver of sector rotation is the variability of currency values (inflationary, disinflationary, or deflationary) and interest rates. As the economy expands, demand for raw materials creates inflationary pressures, which in turn prompt higher interest rates, which increase the value of the currency, which reduces the competitiveness of a country's exports as the currency causes them to cost more to other countries. This final stage causes the economy to contract, reducing demand for raw materials, which creates deflationary pressures, which in turn prompt lower interest rates, which decrease the value of the currency, which increases the competitiveness of a country's exports—creating a new market cycle. The relative strength of commodities, bonds, currencies, and stocks shift in this changing monetary climate in a somewhat predictable manner.

Quelle: https://en.wikipedia.org/wiki/Sector_rotation



 
  • Like
Reaktionen: plenaspei
Murphy geht in seinem Buch "Trading with Intermarket Analysis: A Visual Approach to Beating the Financial Markets Using Exchange-Traded Funds" in Kapitel 9 auf die Relation zwischen Nicht-Basiskonsumgüter und Basiskonsumgüter ein.

Um die Nicht-Basiskonsumgüter/Basiskonsumgüter-Relation zu verfolgen nimmt Murphy die beiden ETFs XLY und XLP. Er zeitgt wie der Bruch des Abwärtstrends in der Relation XLY/XLP im 2009 ein Kaufsignal geliefert hat (grüner Kreis in der Grafik unten). Dieses Kaufsignal hat in etwa mit dem Tief im S&P 500 (blau) korrespondiert.

Anhang anzeigen 11678

Nun sieben Jahre später sehen wir wieder einen Trendbruch. Dieses mal nach unten.

Anhang anzeigen 11679

Ich denke, das kann man durchaus als Warnsignal interpretieren. Entwickelt sich diese Relation weiter nach unten, dann werden wir wohl noch ein grösseres Crashly sehen.

Hier noch der ganze Bereich 2006 - 2016

XLY-XLP_weekly_20160515.PNG

ich werde in nächster Zeit sicher vermehrt einen Blick darauf werfen.

 
Zuletzt bearbeitet von einem Moderator:
  • Like
Reaktionen: plenaspei und habi
Hier eine gute Grafik mit den verschiedenen Sektoren aufgeteilt in die Marktzyklen,


Erinnert mich stark an den Produkt-Lebenszyklus (Product Life Cycle) im Marketing.

plc.jpg

Der wesentliche Unterschied dürfte sein, dass die meisten (Aktien-) Sektoren nach einem "Boden" sich wieder aufschwingen (in der FAZ Grafik z.B. Finanzdienstleistungen). während bei Produkten der Boden dann Boden bleibt (Bsp. Dampfmaschinen)

 
Erinnert mich stark an den Produkt-Lebenszyklus (Product Life Cycle) im Marketing.


Ja warum nicht. Geht bei beiden Modellen um Zyklen. Jedoch ganz verschiene Zyklen.

Beim sogenanten Sektorenrotations-Modell wird meisten diese Grafik gezeigt:

6a0105370026df970c01538decb605970b-800wi


Quelle: Artikel von Murphy http://stockcharts.com/articles/chartwatchers/2011/04/the-sector-rotation-model.html

Es zeigt einerseits den Wrtschaftszyklus (grün) und andererseits den Aktienmarktzyklus (rot). Erste Erkenntnis: Der Aktienmarkt eilt der Wirtschaft voraus. Das ist eigentlich fast immer so. Das wichtigste worum es in diesem Modell geht sind aber die verschiedenen Sektoren oben. Welche Sektoren performen am besten in welcher Phase des Aktienmarkt- bzw. Wirtschaftszyklus.

Man kann entweder entsprechend in die Sektoren investieren und je nach Phase in andere Sektoren wechseln. Oder man kann aus den Rotationen, welche ja am Markt ersichtlich sind, Schlüsse daraus ziehen, in welchem Stadium im Aktienmarktzyklus wir uns befinden.

 
Zuletzt bearbeitet von einem Moderator:
  • Like
Reaktionen: kurt
Danke für dieses Thema.

Murphy ist unbedingt empfehlenswert, da hast Du recht.


Ja, ist wirklich ein interessantes Thema. Wäre schön wenn sich noch jemand, der sich besser damit auskennt, beteiligen würde. Nixx hat den neuesten Murphy auch gelesen und kennt sich glaubs recht gut aus mit dem Thema.

Die Warnsignale mehren sich.


Solange das XLY/XLP Ratio nicht wieder über 1.55 geht sehe ich auch das immer noch als Warnsignal. Letzte Woche hat es sich knapp unter 1.50 eingependelt.

XLY-XLP_weekly_20160522.PNG

Falls es jemand selbst verfolgen will hier der Link: http://www.trader-forum.ch/charttool?tvwidgetsymbol=XLY/XLP

(Intraday Timeframe nur direkt auf TV möglich)

 
Zuletzt bearbeitet von einem Moderator:
XLY/XLP Ratio tendiert weiter nach unten. Ist alles in einem minimalen Bereich. Aber trotzdem auffallend da der Gesamtmarkt gleichzeitig nach oben tendiert.

mzyidgfa


 
XLY/XLP Ratio tendiert weiter nach unten. Ist alles in einem minimalen Bereich. Aber trotzdem auffallend da der Gesamtmarkt gleichzeitig nach oben tendiert.


Danke für Deine umfangreichen Charts !

Zum Thema 'sector rotation' folgender Beitrag auf ivolatility.com

Whac-a-Sector !

Lesenswert.

http://www.ivolatility.com/roller/page/trader?entry=volume_16_issue_23_br

Das Algo-Karussel dreht sich ...und dreht sich

Mein Favorit ist Kaffee. Da kommt noch was nach oben.

Gehört jedoch in einen anderen Thread

Gruss

Don

 
Wie genau, wenn man fragen darf? Short XLY und Long XLP same size?


Gibt verschiedene Varianten, je nach dem verschiebt es das Ratio etwas. Same Size ergibt einen Startwert von 1.

Hat die "same Size" Strategie dieselbe Vola wie die 1:1 gleiche Menge Strategie (angenommen XLY und XLP haben nicht die gleiche Vola)? Ich stelle dies jetzt mal etwas Lehrerhaft in den Raum um die stillen Mitleser etwas zum Denken zu animieren. :)

 
Hat die "same Size" Strategie dieselbe Vola wie die 1:1 gleiche Menge Strategie (angenommen XLY und XLP haben nicht die gleiche Vola)? Ich stelle dies jetzt mal etwas Lehrerhaft in den Raum um die stillen Mitleser etwas zum Denken zu animieren. :)


 Ich nehme mal an, gleich wie bei deinem Musterportfolio. Also mit Einbezug der Vola.

XLY/XLP Ratio heute nochmals einen Tick down

 
Zuletzt bearbeitet von einem Moderator:
Die Antwort auf die Frage ist, Nein das hat natürlich nicht die selbe Vola.

Die Begründung:
135adbdf4b3962af36d546611af67aebe433f1be


Hier die Volas der Instrumente XLP, XLY annualisiert mit 252, Durchschnitt seit 2010:





12.04%


17.29%





Bilder sagen wohl mehr als Worte, hier die drei Varianten (gleiche Stückzahl, gleicher Betrag [ex post] , gleiche Vola [ex post]):

Die Vola der Strats:





10.97%


11.54%


11.61%







Die 1:1 Stratgie entspricht dem Verlauf des Ratios, also wenn man genau ins Ratio investieren würde. Dass die beiden andern fast gleich sind ist entweder Zufall oder die Indizes sind ähnlich skalliert.

Welche Investitionsvariante ist nun korrekt? Ich weiss es nicht. Will man das Ratio genau abbilden eher die 1:1 wenn mit mit einem dominanten Leg leben kann ist das ok.

Man könnte auch mit dem Erwarteten Mean Return skallieren, dann wäre es wirklich ein sauberes Ratio und der Drift wäre draussen :roll:

ps: das schöne ist, das Ratio hat immer die gleiche Vola.

pss: korrigiert mich, wenn etwas falsch ist bitte :)

 
Zuletzt bearbeitet:
Weißt einer von euch zufällig, wo man eine Schätzung/Berechnung der langfristigen Performance (25 Jahre) der verschiedenen Sektoren finden könnte? Das wäre einmal intressant zu wissen.

 
Weißt einer von euch zufällig, wo man eine Schätzung/Berechnung der langfristigen Performance (25 Jahre) der verschiedenen Sektoren finden könnte?


Hier die Charts der US Sektoren ETFs:

http://www.trader-forum.ch/charttool?tvwidgetsymbol=XLK

http://www.trader-forum.ch/charttool?tvwidgetsymbol=XLB

http://www.trader-forum.ch/charttool?tvwidgetsymbol=XLP

http://www.trader-forum.ch/charttool?tvwidgetsymbol=XLU

http://www.trader-forum.ch/charttool?tvwidgetsymbol=XLY

http://www.trader-forum.ch/charttool?tvwidgetsymbol=XLI

http://www.trader-forum.ch/charttool?tvwidgetsymbol=XLE

http://www.trader-forum.ch/charttool?tvwidgetsymbol=XLV

http://www.trader-forum.ch/charttool?tvwidgetsymbol=XLF

Die sollten alle ab 1999 verfügbar sein. Das sind immer fast 17 Jahre.

Kannst sie mit dem Compare Symbol auch übereinander legen um die Performance zu vergleichen. Das sieht dann so aus:

v3DfbnZg


Am besten selbst ausprobieren mit dem Charttool...

 
  • Like
Reaktionen: Gorilla
Leider kenne ich mich mit Charttools nicht so aus........aber vielen Dank.

Allerdings scheint es so zu sein, dass bei den ETFs nicht alle Firmen gleichgewichtet sind, womit das Ergebnis etwas "verzerrt" wird.

Laut financial times haben tabak- und alkoholunternehmen, die beste aktienrendite über mehr als hundert jahre erbracht. Ich fände es jetzt intressant zu wissen, wie die Renditen der einzelnen Sektoren über 100 Jahre waren und wie groß die einzelnen Unterschiede wären. Leider weiß ich aber nicht, wo ich so etwas herkriegen könnte, außer von einem Wirtschaftshistoriker.

 
Yahoo, google

edit: dort kann man auch daten downloaden...einfachster Wer für Retail.

 
Zuletzt bearbeitet: